On Being a Denialist Part 6

One of The Git’s favouritest commenters at Watts Up With That? is Dr Robert G Brown, a Professor at Duke University. His comments are well-written and very enlightening. One such recently made has been promoted by Anthony Watts to a head post.

Is the climate computable?

phlogiston: I do realise that over the Antarctic land mass albedo from surface snow is anomalously higher than that from cloud, since the snow presents such a pure white surface. However this is probably not the case for sea ice whose surface is more irregular and cracked with patches of dark sea in between. The trouble is that water vapor is literally a two-edged sword. As vapor, it is the strongest greenhouse gas in the atmosphere by (IIRC) around an order of magnitude, so increasing water vapor can and does measurably increase the GHE — a lot, when considering dry air versus saturated air. In arid deserts, temperatures skyrocket during the day and plummet at night because of the absence of a water vapor driven GHE — CO_2 alone isn’t nearly enough to keep upward facing surfaces from rapidly losing their heat due to radiation. In very humid tropical climates, the nights are consistently warm because of the GHE. However, water vapor is also the mediating agent for two major cooling mechanisms. One is the bulk transport of latent heat — sunlight and LWIR hit the sea surface and cause rapid evaporation of surface molecules of water. Wind blows over the ocean surface, stripping off water molecules as it goes. This evaporated water has a huge heat content relative to liquid water — the latent heat of vaporization. As the warm water vapor is carried aloft by convection, it carries the heat along with it. It also cools as it rides the adiabatic lapse rate upward, and further cools by radiating its heat content away (some of which returns to the Earth as GHE back radiation). Eventually the partial pressure of water vapor in the moist air becomes saturated relative to the temperature and the dew point is reached, making it comparatively probable that the water vapor will recondense into water. In order to do so, though, several things have to be “just right”. The water vapor has to be able to lose the latent heat of vaporization that it picked up at the water surface when it evaporated. The future water droplets have to be able to nucleate — which is a lot more likely to occur when there are ionic aerosols in the atmosphere as water (a polar molecule) is attracted to bare charge of either sign. More here.

Thought for the Day

The observer, when he seems to himself to be observing a stone, is really, if physics is to be believed, observing the effects of the stone upon himself. – Bertrand Russell


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s